1 JANUARY 1988

J. T. BACMEISTER AND R. T. PIERREHUMBERT

On High-Drag States of Nonlinear Stratified Flow over an Obstacle

J. T. BACMEISTER
Geophysical Fluid Dynamics Program

R. T. PIERREHUMBERT
Geophysical Fluid Dynamics Laboratory/NOAA, Princeton University, Princeton, New Jersey
(Manuscript received 10 April 1987, in final form 25 June 1987)

ABSTRACT

We have carried out a numerical investigation of the nature of high-drag states occurring in nonlinear stratified
flow over obstacles. In particular, we consider the relative merits of theories which view the drag enhancement
as due to linear resonance vs mechanisms which seek 1o exploit analogies with nonlinear hydraulic theory.

First we examine the behavior of the system as a function of the height of a zero-wind line imposed in the
ambient flow. The character of the high-drag states conforms well to the predictions of the internal hydraulic
analysis of Smith, and cannot be explained in terms of linear resonance. However, a high-drag state emerges
even when the initial critical level height is below the lowest predicted resonant height. In this case an upstream-
propagating bore is generated which adjusts conditions so as to allow a high-drag state. Further experiments
with a narrow mountain revealed that nonhydrostatic effects do not appreciably affect the behavior for the
lowest resonant position, but considerably reduce drag at the higher order resonances.

In the second series of experiments, the numerical model is initialized with the idealized high-drag states
yielded by Smith’s theory, subject to uniform upstream wind conditions. When the mountain is high enough
to produce wavebreaking in uniform flow, an overturning region develops at the theoretical level of no motion
and a vertically propagating wave emerges aloft; nevertheless, the flow near the ground remains substantially

unaltered. When the mountain is too low to support wavebreaking, the mixed region in the lee collapses, and *

the flow reverts to a nonhydraulic Long’s model solution subject to a radiation upper boundary condition.
Thus, wavebreaking is a crucial part of the dynamics maintaining the high-drag state.

Our results expose some aspects of nonlinear gravity wave critical level behavior that are of general interest.
The long term properties of the critical level were found to depend on the phase of the incident wave. Of
particular interest are the circumstances in which the critical level acts as an absorber for all time. In this case
the convergence of vertical momentum flux is balanced by a divergence of horizontal momentum flux, a state
of affairs which can occur only for a horizontally localized wave packet incident on a horizontally unbounded
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critical level.

1. Introduction
a. Overview: Wave-breaking and high-drag states

When a stratified current flows over an obstacle, the
obstacle experiences a drag force. Predicting the de-
pendence of this drag force on the various flow param-
eters is a problem of obvious interest. Although much
of the work in this area has been motivated by the
phenomenon of severe downslope windstorms, the re-
sults have consequences extending far beyond their ap-
plication to this purely local mesoscale event. Apart
from its general intellectual attractions as a fundamen-
tal problem in fluid dynamics, understanding the non-
linear drag behavior is central to any attempt to pa-
rameterize the effects of mountain drag on larger scale
circulations.

Field observations and numerical experiments have
revealed that in the nonlinear regime the drag can be
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an order of magnitude greater than that obtaining in
linear theory or in the steady nonlinear theories of the
type pioneered by Long (1972 and references therein).
Asaresult of their work on the simulation of downslope
windstorms Peltier and Clark (1979) were the first to
perceive the important association between wave-
breaking and high-drag states. In the high-drag config-
uration low level air parcels experience permanent ac-
celeration as they cross the mountain, and do not return
to their undisturbed far-upstream speed. Such asym-
metric, high-drag flows have been observed in a variety
of numerical models. Pierrehumbert and Wyman
(1985) were apparently the first to establish that the
far-upstream and downstream flow modifications, the
hallmark of hydraulic behavior, can occur even'in the
absence of strong structure in the initial wind and static
stability fields, provided there is wave breaking. De-
tailed numerical experiments exploring the utility of
hydraulic theory when the oncoming flow has a strong
inversion at low levels were carried out by Durran
(1986). Smith (1985) presented a simple steady state
theory that confirms the relevance of the hydraulic
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analogy for a wide variety of flows in which wave
breaking occurs. Nevertheless, there is still considerable
controversy surrounding the precise mechanism of the
high-drag states. In this paper, we shall resolve a num-
ber of the major issues by means of a program of nu-
merical experimentation. First, we provide a critical
review of the two major viewpoints on the problem.

b. Resonant amplification theory

The idea advanced by Peltier and Clark (1979) is
that the wavebreaking region aloft acts as a reflector,
and that its altitude is arranged such that the space
between the breaking layer and the ground is a resonant
cavity for internal gravity waves. The resonance hy-

pothesis was explored further by Clark and Peltier .

(1984; hereafter CP84), who studied the evolution of
mountain waves propagating in an ambient flow which
had a preexisting zero-wind line, a situation we shall
refer to as the “environmental critical level case.” This
configuration, which is also the subject of much of the
present work, is summarized in Fig. 1. This problem
is of vital importance not only because of the preva-
lence of critical level flows in nature but also because
the flow provides a stringent test of our understanding
of nonlinear flow over mountains. Moreover, gravity
wave critical level dynamics is of importance in count-
less phenomena besides the mountain wave problem
which is the immediate motivation here.

The key result of CP84 is that the drag is a sensitive
function of the height H, of the imposed critical level,
with high-drag states occurring in the vicinity of a dis-
crete set of preferred values of H,. Their results are
reproduced in Fig. 2. Work carried out independently
by Tomine (1984) also showed that critical layer flow
can lead to high drag. He found moreover that this
effect could account for certain strong depressions ob-
served in the lee of mountains in Hokkaido.

The theory proposed by CP for the preferred values
of Hj rests on three assumptions: 1) linear, hydrostatic
theory captures the essence of the phenomenon, except
in the vicinity of the critical level; 2) the critical level
acts as a perfect reflector located at Hy; and 3) the phase
of the reflection is such that the effective boundary
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FIG. 1. Schematic of the geometry used in the critical layer
experiments. Here N is the Brunt-Viisili (stability) frequency.
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FIG. 2. Light line: Maximum surface drag as a function of critical
layer height H, for flows over a mountain with Ni/U, = 0.75 (after
Clark and Peltier, (1984)); filled squares are results taken from Clark
and Peltier, while the open square is an additional data point added
in the present study. Open circles: results from the present study,
with Nh/U, = 0.5, showing that the position of the high-drag states
shifts with mountain height; the dashed line connecting these results
is a suggestion of what the detailed drag curve might look like for
the lower mountain. The drags are normalijzed by the Long’s model
drag for uniform flow U, over an obstacle of the appropriate height,
subject to a radiation upper-boundary condition.
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condition is d,w = 0 at z = H,. Given these assump-
tions, the forced wave grows resonantly when NHy/ U,
=x/2,3n/2, 5w/2, Tx/2 + - -, where U, is the constant
wind well below the critical level and N is the ambient
stability frequency. One obtains no resonances without
the reflection.assumption 2, and even assuming perfect
reflection the position of the resonances depends en-
tirely on the specification 3 of the phase of the reflec-
tion. ‘Since CP gave no a priori justification for the
latter two assumptions, their theory is incomplete. We
shall see in section 2 that for some values of Hj the
critical level actually acts as an absorber for all times.
Experiments were carried out by CP only for Nh/U,
= (.75, where 4 is the mountain height; for this moun-
tain, the “predicted” resonance positions at 3x/2 and
7x/2 are verified by the nonlinear simulations. The
predicted resonance at 57/2 is absent, and CP did not .
examine critical levels as-low as /2.

Under what circumstances does a gravity wave crit-
ical level reflect, and when it does, what is the phase
of the reflection? For the case in which the critical layer
dynamics is linear, Booker and Bretherton (1967)
showed that the critical level does not reflect as long
as its local Richardson number (Ri) exceeds ¥s; for large-
Ri the critical level becomes a perfect absorber, and
none of the incident wave is transmitted. (For Ri
= O(1) there may still be a partial reflection of the in-
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cident wave from regions of rapidly varying wind or
stability below the critical level.) On account of lin-
earity, the conclusions hold regardless of whether the
source A(x) is sinusoidal in a periodic domain or lo-
calized in an unbounded domain.

The Booker-Bretherton theory is of limited appli-
cability to the highly nonlinear regime of concern in
the present work. There have been a number of theo-
retical studies of nonlinear stratified critical levels (see
Maslowe 1986), which have invariably concluded that
the critical level ultimately becomes a perfect reflector
if the viscosity is small (see especially Maslowe 1972).
The utility of these theories for our purposes is severely
compromised by the assumption that the incident wave
is sinusoidal in x. Because the solvability conditions
used to disambiguate the purely inviscid family of so-
lutions rely crucially on a closed streamline topology
peculiar to the periodic case, it is unlikely that the re-
sults carry over to a localized incident wave in a hor-
izontally unbounded domain. There are further theo-
retical reasons to expect the latter case to be funda-
mentally different from the periodic case; these will be
taken up in section 2d. The only theoretical attempt

on the unbounded case was that of Margolis and Sd’

(1978), which yielded only partial results. From their
analysis, the most one can conclude is that for critical
level flow over isolated topography there are no steady,
inviscid, adiabatic solutions which are asymptotic to
undisturbed flow far upstream; if the topography is
modified so as to permit solutions, there is an infinite
multiplicity of possible states, and no indication of
which would be realized.

As Maslowe (1986) has pointed out, there have been
few numerical studies of stratified critical levels, and
none with state-of-the-art resolution. Such experiments,
as there are (e.g., Breeding, 1971), generally indicate
some nonlinear enhancement of reflectivity, but these
too have for the most part been carried out for periodic
waves. Thus, the inquiry initiated by Tomine (1984)
and CP84, and carried further in the present work,
serves to map out previously unexplored features of
critical level dynamics.

¢. Hydraulic analogies

The following presumes a familiarity with the basic
theory of one-layer hydrostatic flow over an obstacle
(“hydraulics™). Readers unfamiliar with the subject
may wish to consult the review articles by Baines
(1987) or Long (1972). For hydraulic flow, one can de-
fine a local wave speed VgD and a local Froude
number F = u/ Vg—D, where D is the local layer depth
and u the local fluid velocity. One distinguishes the
three basic flow categories shown in Fig. 3, according
to the pattern of F. The “transitional flow” in Fig. 3 is
characterized by high drag and large winds in the lee.
From time to time investigators have sought to connect
transitional hydraulic states with severe downslope
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FIG. 3. Schematic behavior of one-layer hydraulic flow: top,
subcritical; middle, supercritical; bottom, transitional.

F>1 aas
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windstorms, but until recently, such attempts have
foundered because it was not possible to identify a clear
analogue of the interface height or of F in naturally
occurring continuously stratified flows.

While a complete generalization of hydraulic theory
to continuously stratified flow has not yet been
achieved, it has become clear that the essential ingre-
dients necessary for a hydraulic analogy to hold are (a)
a wave system which is nondispersive in the horizontal,
and (b) a reflecting upper boundary condition (which
need not be applied along a fixed, level surface). The
former condition assures that a local wave speed can
be determined at each x without reference to the state
of the system elsewhere, while the latter discretizes the
spectrum of wave speeds and vertically confines the
wave energy put into the system. Small departures from
the idealized conditions, e.g., a slightly leaky upper
boundary or weak dispersion, can be tolerated. The
interplay of the two conditions is illustrated most
clearly in the asymptotic theory of Grimshaw and
Smythe (1986), who solved the weakly nonlinear prob-
lem of flow of a continuously stratified fluid over a low
obstacle when the oncoming flow is slightly detuned
from an internal wave resonance. The numerical sim-
ulations carried out by Durran (1986) demonstrated
that the hydraulic analogy holds over a broader range
of conditions than that covered by the Grimshaw-
Smythe theory.

The nondispersive condition is satisfied if the
‘mountain is broad enough for the hydrostatic approx-
imation to be valid. It is the identification of a suitable
reflecting structure that has proved problematic in at-
tempts to apply the hydraulic analogy to naturally oc-
curring flow in the atmosphere. Similarly, in the context
of the environmental critical level case, the fundamen-
tal issue is whether the critical level acts as a reflector.
Even when it does, predictions cannot be made on the
basis of the hydraulic analogy unless one has a theory
for the phase of the reflections.
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The key insight-in Smith (1985) is the identification
of a reflecting structure common to a wide variety of
high-drag states observed in nature and in numerical
models. Smith’s theory rests on the assumption that
there is a “dividing streamline” at height H + 68.(x)
above which the fluid is essentially quiescent, and that
the density of the fluid between §, and H is well mixed;
it is presumed that §. < 0 and §, = 0 as x > —c0.
Hydrostatic balance then implies the reflecting bound-
ary condition 3,6(x, z) = 0 at z = H + 6.(x), where §
is the streamline displacement. If the wind and static
stability under the dividing streamline are uniform far
upstream of the obstacle, then the exact nonlinear so-
lution for the steady state flow below the dividing
streamline can be obtained analytically using Long’s
model (Long, 1972). Given these assumptions the di-
viding streamline height is determined by the tran-
scendental equation

h(x) = 8:(x) cos[(N/UYH + 6.(x) — h(x))], (1.1)

which is analogous to the Benjamin-Lighthill cubic
equation obtained in the 1-layer case (Long 1972). In
(1.1) N is the far-upstream stability frequency and U
is the far-upstream current. As discussed by Smith, (1.1)
predicts that there is a discrete set of H for which tran-
sitional flow can occur, provided N#/U < 1. The system
is invariant under the transformation H - H + 2«
(U/N), but unlike linear resonance is #ot invariant un-
der H —> H + = (U/N).

In applying his theory to complex flows, Smith as-
serts that high-drag states evolve only when the wave-
breaking level nearly matches one of the values of H
for which transitional flow can occur; the definition of
“nearly” here is outside the scope of Smith’s theory.
An environmental critical level constrains wave break-
ing to occur at or somewhat below the zero wind line,
if the mountain is not too high; H + §, is therefore
identified with the height of the critical line, and the
far-upstream dividing streamline height H is conse-
quently identified with the environmental critical line
height Hy. One further identifies U with the ground
level wind speed Uj in the environmental critical line
case. These identifications permit a prediction of the
values of H, leading to high drag. It is evident that the
path leading to this prediction involves a number of
speculative physical assumptions. Numerical experi-
ments to be detailed here probe the validity of these
assumptions and map out aspects of the phenome-
nology which are not covered by steady state hydraulics.
It will be seen that despite its potential shortcomings,
Smith’s theory has considerable explanatory power.

It is prudent to inquire as to whether the two theories
~ of high drag states are really distinct; indeed, in the
work of Grimshaw and Smythe it was shown that the
evolution of a high-drag transitional flow begins with
linear resonance. Additionally, the boundary condition
9,6, = 0 derived by Smith is equivalent to the condition
d.w = 0 assumed arbitrarily by CP84. However, Smith’s
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condition is applied at the displaced critical level,
whereas that of CP84 is applied at the fixed height H,
(and likewise the bottom boundary condition is applied
at z = 0). The quintessentially nonlinear effects cap-
tured by hydraulic theory show up most starkly in its
prediction for the spacing of the high-drag values of
NH,/Uy,. Linear resonances occur at intervals of =, but
nonetheless high-drag states occur only at intervals of
27 because it is only for these values that the nonlinear
feedback has the right sign to permit the resonance to
evolve into a transitional flow.

d. Outline of the paper

In section 2, we describe a series of experiments in
which a hyperbolic tangent wind profile with an en-
vironmental critical line is blown over mountains of
various heights, and compare the results with the pre-
dictions of the resonant and hydraulic theories. Here,
we also present momentum budgets which show how
the wave pseudomomentum absorbed at the critical
level affects the state of the large-scale flow. (See
Mclntyre 1981 for an explanation of why we do not:
speak of “wave momentum” in this context.) In section
3 the limits of Smith’s theory as applied to flows with
an environmental critical level will be tested, with par-
ticular emphasis on transient and nonhydrostatic ef-
fects. The importance of having an environmental
critical line in the oncoming flow is examined in section
4, where experiments are described in which the ideal
high-drag configuration postulated by Smith is used to
initialize the time-dependent numerical model subject
to uniform upstream flow.

Our principal conclusions are summarized in section
5. The results supporting these conclusions are culled
from several dozen numerical experiments. It has only
been possible to include the bare minimum of results
needed to support our argument. In most cases, more
complete results, particularly contour maps of flow
fields and time dependences of drag, may be found in
Bacmeister 1987.

2. Experiments with an environmental critical layer
a. Overview

The numerical experiments discussed here follow
closely those described in Clark and Peltier (1984). A
hyperbolic tangent wind profile is used:

U(z) = U, tanh[(z — Hp)/A)

where A = (Uy/N).

Further than A away from the critical line the mean
wind can be regarded as constant with a value of U.
These parameters give a minimum Richardson number
of 1.0, which is somewhat lower than the value 2.25
used by CP84.

Our experiments were conducted with a conven-
tional nonhydrostatic pressure-velocity model in ter-

2.1)
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rain following coordinates, similar to that employed
by Clark (1977). The hyperbolic tangent mean wind is
established from a state of rest with a body force applhied
for a sufficiently long time and then turned off. The
flow is accelerated over a period of several advection
times, L/U,. The domain is periodic in the horizontal
with a lateral sponge layer to absorb horizontally prop-
agating disturbances. The wind in the lateral sponge
layer is relaxed to the hyperbolic tangent profile. Fur-
ther details concerning the model and initialization
procedure may be found in Bacmeister (1987).

In these experiments, we found that the vertical res-
olution needed to provide satisfactory accuracy was
surprisingly coarse given the fearsome reputation of
critical layers. For several experiments Az was varied
from 0.33Uy/N to 0.12Uy/N without producing no-
ticeable changes in the solution. It appears that the
length scales which must be resolved are the shear
thickness and the wave-induced parcel displacements
in the breaking region. The first of these is externally
imposed and the second is on the order of twice the
mountain height in the experiments in question. The
thickness of the nonlinear critical layer increases with
the forcing amplitude, so we are left with the rather
curious result that strong nonlinearity makes the phe-
nomenon easier to resolve. The majority of the exper-
iments described here were performed with a vertical
resolution of z = 0.25Uy/N. The horizontal resolution
was fixed at x = 0.167L where L is the mountain half-
width. In most of the experiments, 150 points were
used in the horizontal and 40 points in the vertical. A
vertical sponge of 12 points was found adequate to
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absorb the small amount of wave energy that was
transmitted through the critical level.

In reporting our results, times will be measured in
advection units L/Uj, lengths in units of mountain
half-width L, depths in stratification units Up/N and
drag forces in units of Uy*/N. The nondimensional pa-
rameters controlling the problem are Nh/Up, NL/Up,
NH,/U,, and Ri = N2A%/Uy?. A summary of the ex-
periments referred to in this paper, together with the
resulting drag, is given in Table 1.

b. Numerical results
1) PARAMETERS USED BY PELTIER AND CLARK

First, we would like to show briefly that the model
-qused in this study is capable of reproducing the results
of Peltier and Clark when similar parameters are used.

The mountain used in CP84 had NA/U, = 0.75 and
NLJU, = 1.5, and a high-drag state was found to evolve
for a critical level height Hy = 37/2(Uy/N). We carried
out a simulation with Ni/U, = 0.75 and NL/U, = 8.0
for the same critical level height. Good agreement was
found, both in the magnitude of the maximum surface
drag and in the time behavior of the drag.

The potential temperature and velocity fields for this
case are also much as found by CP84. At later times
the critical layer flow is similar to the asymmetric hy-
draulic flows discussed in section 1. A relatively shallow
layer of high winds is found at the surface. It is capped
by a well-mixed, stagnant region that extends to the
critical level. The smaller Ri at the critical level does

TABLE 1. Drag results for the numerical simulations discussed in this paper. Note: # is the mountain height, H, the critical layer or
dividing streamline height, L the mountain half-width and Ri the Richardson number. In critical layer cases, U, is the magnitude of the
wind far below the critical level; in cases initialized with the idealized steady states, Uy is the far-upstream mean wind. Calculations performed
with Ri = 1.0, except as otherwise noted. Drag reported in units of Uy*/N. LM = Long’s model; an asterisk, high-drag state (asymmetric
hydraulic-type flow with downstream-propagating bore); Im, Long’s model-type flow (absorbing critical layer); r, low-drag state (nonresonant

reflecting critical layer). ‘

Nh/ Uo NHo/Uo NL/Uo Comments l)c,g
5% 3n/2 8 DatT=28.13 1.58
.5(r) 3n/2 8 <0.07

5* 3.45 8 0.67 + 0.03
S5* 345 + 27 8 D still increasing at 7 = 60 0.56
.5(Im) 345+ 7 8 Attains LM value by 7' = 12 0.21
15 2.0 8 1.05
A5(r) 0.7x 8 0.02
15* 0.5« 8 D still increasing at 7 = 22 >0.04
.08*? 0.4~ 8 D still increasing at 7= 22 >0.0063
5% 3.45 8 Ri = 10.89 0.42
5% 3n/2 2 1.21
.5(r) 3n/2 2 <0.07

5* 3.45 2 0.51 + 0.05
5* 345+ 2n 2 0.29 +0.05
98* 3n/2 10 Initialized with theoretical solution 3.78
.5(Ilm?) 345 10 Initialized with theoretical solution 0.404
98* 3n/2 4 Initialized with theoretical solution 30 04
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not appear to have had much effect on the evolution
of the high-drag flow. Given the close agreement be-
tween the present results and those of CP84, we assume
that our model has resolved the processes that caused
the development of the high-drag configuration in
CP34.

2) EXPERIMENTS WITH NA/U = 0.5

For a mountain of height Na/U, = 0.75, as used in
CP84, Smith’s theory predicts that the lowest value of
H, yielding transitional flow is 4.1 U,/N. This is close
to the critical level height 3w/2Uy/N ~4.7Uy/N which
CP84 found to give the largest surface drag. However,
as the mountain height decreases towards zero, Smith’s
theory predicts that the first critical Hy decreases to =/
2(Uy/N); for Nh/Uy = 0.5, the theory predicts a high-
drag regime for Hy = 3.45(Up/N). On the other hand,
the mechanism proposed by CP84 predicts no depen-
dence on mountain height since it relies on linear res-
onance. It is, therefore, possible to distinguish between
the two theories by extending the critical level exper-
iments of CP84 to smaller mountain heights.

In Fig. 4 we show surface drag as a function of time
for two flows over a mountain with Nh/U, = 0.5. The
critical line is at Hy = 3.45(Up/N) in one case and at
Hy = 3%/2(Uy/N) in the other. The flow with H|,
= 3.45(Uy/N) has a maximum surface drag that is twice
as large as the largest surface drag for Hy = 3%/2(Uy/
N). Furthermore, the drag in the “linear resonance”
case drops precipitously after reaching its maximum

1.0

NHo/U=3.45

0.5—

Drag (pU3/N)

NHo/U=371/2

/

0 15 30
Time (Ut/L)

FIG. 4. Surface drag as a function of time for critical layer flow
over a mountain of height Na/U, = 0.5 and width NL/U, = 8.0.
Results are shown for two critical line heights. The lower curve is
obtained when Hy = 37x/2Uy/N, the resonant value predicted by Clark
and Peltier (1984). However, for the lower mountain, the drag de-
creases almost to zero after reaching a maximum value associated
with freely propagating waves, the Long’s model value. For H,
= 3.45Uy/N the drag increases well beyond the steady state value

_predicted by Long’s model. For a mountain of Nh/U, = 0.5, a critical
line height of 3.45Up/N is consistent with an asymmetric state in the
nonlinear resonance theory of Smith (1985).
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FI1G. 5. The 6 fields for a mountain with Ni/U, = 0.5 and NL/U,
= 8.0 and a critical line height of Hy = 3.45U/N. Top panel: ¢t = 9L/
Up; middle panel: t = 13.5L/U,; lower panel: t = 18L/U,. This
asymmetric pattern is characteristic of the high-drag state.

value near ¢ = 5L/U. The maximum value is close to
the steady state momentum flux predicted for this to-
pography by Long’s model subject to a radiation
boundary condition, which is shown for comparison
in Fig. 4. In contrast, when Hy = 3.45(Uy/N), the drag
continues to increase right up to the end of the inte-
gration.

Potential temperature fields from the experiment
with Nh/Uy = 0.5 and Hy = 3.45(Uy/N) are shown in
Fig. 5. Results for Hy = 3#/2(Up/N) are shown in Fig.
6. A distinct difference between the flows is evident at
later times. The flow with the critical level at H,
= 3.45(Uy/N) evolves into an asymmetric configura-
tion that strongly resembles the high-drag hydraulic
states found in CP84. On the other hand, the flow with
the critical level at the CP84 resonance position does
not develop this pronounced asymmetry. In fact, it be-
comes more symmetric as time progresses. The largest
flow speeds occur aloft directly above the mountain,
and in contrast to the high-drag case turbulent mixing
is confined to a spot at the critical level directly above
the mountain. The momentum flux for this experiment
(not shown) approaches a steady state value of zero at
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FIG. 6. The 6 fields for a mountain with N4/U, = 0.5 and NL/U,
= 8.0 and a critical line height of Hy = (37/2)Uy/N. Top panel: ¢
= 9L/U,; middle panel: ¢ = 18L/U; bottom panel: t = 28L/U,. This
pattern is characteristic of the low-drag state, in which the critical
level acts as a nonresonant reflector.

all levels, suggesting that a vertically trapped mode is
the dominant flow feature.

Both the time history of the drag and the final state
attained imply that when Hy = (37/2)Up/N, the critical
line acts as a perfect reflector located at a nonresonant
height. Although Smith (1985) claimed validity for his
theory only for high-drag transitional flow, it is of in-
terest to determine whether his upper boundary con-
dition remains valid for nonresonant reflection. To es-
timate the phase of the reflection, we apply Long’s
model below the critical level. The steady solution is

6 = h(x) cos[(N/Up)(z — h)]

+ A(x) sin[(N/Up)(z — h)], (2.2)

where 4 is determined by the upper boundary condi-
tion applied at Hy + §.(x). From Fig. 6 we estimate §,
= —0.5 at the mountain crest; application of the
boundary condition 4,5 = 0 implies 4 = 0.64h, whence
(2.2) predicts a node in 6 at z = 2.64. This is in excellent

agreement with the node at z = 2.7 in Fig. 6.
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3) HIGHER-ORDER RESONANCES

In order to examine the spacing of the resonances
two additional experiments with Na/U, = 0.5 were
performed. One is for a critical level at Hy = (3.45
+ 7m)Up/N and the other for Hy = (3.45 + 27)Uy/N;
final drags for these two cases may be found in Table
1. Only the latter develops into a high-drag state, con-
firming the spacing of 2= Uy/N between the resonances
predicted by Smith’s formulation. Examination of the
wind and 6 fields confirms also that the flow develops
into a transitional state with high surface winds in the
lee of the mountain much as in Fig. 6. This takes much
longer than it did in the cases with critical lines below
3x/2Uy/N. By 60L/U,, the surface winds are 75% as
strong as the maximum winds in the case with H,
= 3.45U,/N. However, at the end of the integration,
surface winds are still increasing.

For Hy = (3.45 + m)Uy/N no anomalous growth in
the surface drag occurs. The flow patterns for this ex-
periment (Fig. 7), do not show the pronounced up-
stream-downstream asymmetry that is seen in the high-
drag flows. However, the flow does not approach the
symmetric modal structure, characteristic of perfect
nonresonant reflection, seen in Fig. 6. At the end of
the integration, the structure below the critical layer
still resembles that of a vertically propagating wave train
in a vertically unbounded domain. This impression is
reinforced by the momentum flux profiles, which be-
come uniform in z, up to the critical level. The value
of the vertical momentum flux below the critical level
approaches the value in Long’s model for the same
topography. In contrast to the situation depicted in
Fig. 6, where the critical level becomes a reflector, in
Fig. 7 the critical level remains an absorber throughout
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F1G. 7. The 8 field for NhiUo = 0.5 and Hy = (3.45 + w)Uy/N at
time ¢ = 40L/U. This pattern is characteristic of the “absorbing state”
in which the drag has the value appropriate to Long’s model subject
to a radiation upper boundary condition.
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the calculation. This reveals the subtlety of the nonlin-
ear critical level dynamics: evidently, the reflection and
absorption coefficients depend on the phase of the in-
cident wave. There is as yet no analytical theory of this
phenomenon.

Our drag results for the lower mountain are plotted,
together with those of CP84 in Fig. 2. The drags are
normalized by Long’s model drag for uniform flow U,
- over an obstacle of the appropriate height, subject to
a radiation upper boundary condition. It is clear that
reducing the mountain height leads to an overall shift
to the left of the high-drag values of H,,, much as pre-
dicted by the hydraulic theory. We see also that the
results of CP84 support our finding that the nonlinear
critical layer is an absorber when Hj, is about a half
wavelength above the peak drag position. Their cal-
culations exhibit a plateau in which the drag is close
to the value obtained in Long’s model for a mountain
with Nh/Uy = 0.75 and NL/U, = 7.5.

The reflective boundary condition incorporated into
(1.1) cannot, of course, lead to an absorbing state; in
the “odd order resonance” case (1.1) predicts the
emergence of an exactly symmetrical zero drag state
similar to the nonresonant reflecting case shown in Fig.
5; e.g., with Hy = (3.45 + m)Uy/N and Nh/U, = 0.5
the critical line displacement §, is symmetric about the
obstacle and has maximum value +0.53 at the crest.
Further insight can be obtained by considering the pre-
dictions of (1.1) for flow over a small mountain with
Hj set at an odd order linear resonance; in this instance,
the detuning of the-resonant cavity by displacement of
the reflecting structure causes the wave amplitude to
saturate at O(4'/?), but the response remains symmetric
rather than transitional, owing to the sign of the dis-
placement. This state of affairs is a novel possibility in
internal hydraulic theory, which has no counterpart in
the one-layer case. Such symmetric states no doubt
come to pass when the upper boundary assures reflec-
tion (e.g., if N2 = 0 aloft), but the critical level need
 not always act as a reflector. A fully predictive theory

of the drag must await a better understanding of the
appropriate boundary condition to apply at a nonlinear
- critical level.

¢. Comparison with steady states postulated in Smith
(1985)

The strong dependence of surface drag on mountain
height suggests that the analysis presented in Smith
(1985) is substantially correct. Further evidence of this
comes from a comparison of the flow fields in the nu-
merical experiments with those obtained from the ideal
configuration of Smith (1985). The idealized flow pat-
" terns can be readily computed from the formulas given
in Smith’s paper. Note that the environmental critical
level does not appear explicitly in these flows. It is as-
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sumed that its effects can be completely subsumed into
the specification of the dividing streamline height.

In Fig. 8 we show the idealized horizontal velocity
and potential temperature fields for transitional flows
over a mountain with Nh/U, = 0.5. Above the dividing

- streamline height, Hy, uniform stratification and con-

stant horizontal wind with a speed U, have been as-
sumed. Ignoring the downstream-propagating jump
present in the time-dependent flows, we see that there
are strong similarities between the ideal steady states
and the flows in Fig. 5. The time-dependent fields are
much noisier due to the generation of small scales as
waves break at the critical layers. Small-scale noise is
also generated along the upper edge of the high wind
layer in the lee, presumably by poorly resolved shear
instability. The time-dependent flows show evidence
of flow blocking upstream of the obstacle. This is not
present in the ideal steady states, and probably results
from the fact that initially the breaking level in the
time-dependent flows is slightly below Hj. As will be
discussed in 3b, an upstream propagating surge adjusts
the incoming flow so that an asymmetric transitional
steady state is possible.

However, the overall structure of the idealized
asymmetric flows agrees with that of the time-depen-
dent flows. According to (1.1) any transitional solutions
for mountains with 42 — 0 far upstream and far down-
stream must have Hy + 6. = «/2 + 2nj downstream
of the mountain. The flow from the time-dependent
numerical simulation shown in Fig. 5 satisfies this con- -
dition, approximately, with j = 0; the layer of strong
flow capped by a mixed region has a depth of about
1.6U,/N in the lee of the mountain.

The maximum flow speeds downwind of the moun-
tain are somewhat weaker in the time-dependent re-
sults. The “dead” region on the other hand is not com-
pletely stagnant in the time-dependent flows as it is in

NZ/UO v

x/L

F1G. 8. Potential temperature field from ideal steady states pos-
tulated in Smith (1985). The solution is shown for Na/U = 0.5 and
H, = 3.45U/N. Contours are as in Fig. 5. Note that the difference in
the level of the isentropes upstream and downstream of the mountain
is well reproduced.
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the idealized configuration. Several factors could con-
tribute to the discrepancies. First, the flow below the
dividing streamline in the numerical experiments does
not exactly satisfy the conditions needed to apply
Long’s model, both because of its time-dependence and
height-dependence. Upstream influence may reduce
the average wind speed ahead of the mountain, and
also cause its profile to deviate from the uniform flow
required for Long’s model. Second, the interface be-
tween the strong flow in the lee and the overlying
“dead” region is a site of a large amount of turbulent
mixing. This mixing vertically redistributes momentum
between the strong flow layer and the dead region aloft.
Last, the maximum winds in time-dependent simu-
lations were still increasing slowly when the integrations
ended, so that the final steady-state value may be closer
to that predicted by Smith.

d. Momentum budget

According to Smith (1985) the surface drag in the
idealized flows is given by

D = (Hy — 7/2)*Uy*/6N. A (2.3)

Smith’s theory implies Hy = 3.45Uy/N and H,
= 4.1Uy/N for Nh/U, = 0.5 and Nh/U, = 0.75, re-
spectively. This results in surface drags of 0.97Uy3/N
for Nh/U, = 0.5, and 2.5U,>/N for Nh/U, = 0.75. Both
values are somewhat larger than those obtained for the
same mountain height in the numerical experiments.
The weaker lee surface winds in the time-dependent
flows are consistent with the reduced drag, since they
would also be associated with a smaller pressure drop
across the mountain.

The ideal asymmetric flow configuration implies a
large drop in horizontal momentum flux across the
mountain. The momentum flux above the dividing
streamline is identically zero, yet at the surface a large
drag is exerted on the mountain. In the ideal flow, vis-
cous fluxes and time-dependent terms are zero every-
where, so that this imbalance must be exactly com-
pensated by a divergence of inviscid horizontal mo-
mentum flux.

Results of momentum budget calculations for several
critical level flows are shown in Fig. 9. The momentum
budget has been carried out for a box with sides at x
= +4,0L and with a top at the critical line height H,.
The horizontal momentum fluxes are +[ [pou?/2
+ pldz, while the vertical flux is f pouwdx, the integrals
to be carried out over the appropriate sides of the box.
In the high-drag cases the cross-mountain drop in in-
viscid horizontal momentum flux cancels the large dif-
ference between surface drag and the wave momentum
flux aloft. Similar results have been obtained for uni-

Jorm upstream flow in the wave-breaking regime (see
Chap. 5, Bacmeister, 1987). Each of the terms in the
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FIG. 9. Results of momentum budget calculations for a closed
domain. The domain extends from x = —4.0L to x = 4.0L and from
the surface to the critical line at Hy. Results are shown for (a) Nh/
U, = 0.5, Hy = 3.45Uy/N; (b) Nh/U, = 0.5, Hy = 3.45 + wUy/N; (c)
NhjUy = 0.5, Hy = 37/2Up/N. In all cases NL/U, = 8.0. The plain
curve in each panel represents the net inviscid momentum flux into
the box. The remaining curves show the difference in horizontal mo-
mentum flux between —4.0 and 4.0L, and the difference between the
surface drag and the vertical momentum flux at z = H. In all cases,
there is an approximate balance between horizontal and vertical di-
vergence of momentum flux.

momentum budget is individually much larger than
the net inviscid momentum flux.

Budgets for two nonresonant cases are shown in
panels B and C of Fig. 9. In the case with Na/U, = 0.5
and Hy = 3%/2Uy/N the vertical momentum flux is
near zero everywhere and the horizontal momentum
flux appears to be nondivergent. However, the flow
with Nh/U, = 0.5 and Hy = (3.45 + w)Uy/N has a
momentum budget which is qualitatively similar to
that of the resonant case (panel A), in which an ap-
preciable, steady divergence of vertical momentum flux
exists. This is balanced by a steady divergence of hor-
izontal momentum flux. Thus, the critical layer be-
haves as an absorber of wave pseudomomentum, but
not in the expected way. Little of the incident wave is
absorbed locally by viscous processes, and at most a
small fraction of its momentum flux goes into changing
the flow locally. Rather, the incident wave is scattered
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into horizontally propagating disturbances that create
a drop in momentum flux across the obstacle.

The persistent absorbing states establish that the
nonlinear evolution of a localized (in x) wave packet
impinging on a critical level in a horizontally un-

bounded domain differs substantially from the hori- _

zontally periodic case. In the latter case the wave pseu-
domomentum absorbed at the critical level must show
up as an order unity change in the x-averaged flow; as
long as there is absorption, the mean flow must con-
tinue evolving and the system therefore cannot reach
a steady state. In the unbounded case, the absorbed
pseudomomentum can be carried away by horizontally

propagating motions (such as the columnar modes dis-

cussed by Pierrehumbert and Wyman, 1985; Pierre-
humbert and Bacmeister, 1987, in the uniform flow
case), and in consequence the ambient flow where the
wave packet encounters the critical level need not
change much at all. Even the general results of Kill-
worth and Mclntyre (1985), which show that a baro-
tropic Rossby wave critical level must in the mean act
as a reflector, are inherently dependent on a periodic
geometry. It is likely that in an unbounded domain,
. steady, absorbing Rossby wave critical levels could also
exist.

3. Limits of the hydraulic approach
a. Introduction

The results of Smith (1985) are for steady, hydro-
static flow. Earlier we saw that in time-dependent flow
over broad topography the theory yielded good results.
Two questions arise immediately. The first concerns
the influence nonhydrostatic motions may have on
flows over narrower mountains. The resonance con-
ditions could change, or asymmetric solutions could
disappear altogether due to dispersion. These effects
will be discussed in section 3. The second question
concerns the sensitivity of the flow to small deviations

-of the position of the breaking level from resonance
(“detuning”). According to Smith’s theory, steady,
asymmetric flows can exist only when the dividing
streamline is exactly at one of the resonant positions.
In practice, asymmetric flows appear when the breaking
level is within some distance of the theoretical position.
In 3b we will show that upstream influence-can, in fact,
lead to asymmetric flows even when the critical line is
initially far below the theoretical resonance position.

A subtler question is whether Smith’s reflecting
boundary condition remains valid as.the mountain
height (and hence the thickness of the mixed region)
decreases to zero. Assuming that it does, (1.1) predicts
that a transitional flow configuration exists for arbi-
trarily low mountains. Numerical experiments ad-
dressing this point are described in section 3c.

Finally, there is the question of whether the linear
partial reflections which are possible at finite Ri provide
some of the vertical confinement needed in the hy-
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draulic analogy. Experiments at large Ri are discussed
in section 3d, and indicate that the partial reflections
are unlikely to play a significant role.

b. Upstream influence and sensitivity to critical line
height

1) ANALOGY WITH HYDRAULIC THEORY

A comparison of the flows in Fig. 5 with the ideal
flow in Fig. 8 suggests that in the time-dependent ex-
periments, the low-level flow upstream is somewhat
weaker than in the idealized configuration. A quanti-
tative comparison based on the wind data shows that
in the time dependent flows the surface wind at x
= —2.0L is decelerated by as much as 0.3U,. In the
ideal flows, however, the surface wind is not decelerated
by more than 0.15U,. :

In one-layer flow over an obstacle, an upstream surge
is generated when the obstacle height is over the critical
height needed to maintain a steady asymmetric solu-
tion. The surge decelerates the incoming flow and in-
creases the depth of the layer. The new depth and flow
are exactly those needed to maintain a steady asym-
metric solution over the obstacle in question.

Guided by hydraulic theory we conjecture that
asymmetric flows develop when the dividing streamline
is at or below the theoretical resonant position for a
given mountain. According to this view, the upstream

- influence observed in the time-dependent flows would

résult because breaking actually occurs somewhat be-
low the environmental critical line. Upstream influence
then corrects the resulting error in the height of the
dividing streamline by adjusting N and U, appropri-
ately. This conjecture can be tested by placing the zero
wind line itself significantly below the lowest theoretical
resonant position, Hy, for a given mountain. The anal-
ogy with hydraulic theory leads us to expect that an
asymmetric flow will develop anyway, accompanied
by strong modifications of the oncoming flow.

Figure 10 shows the time evolution of the upstream
wind profile (at x = —5L) for an experiment in which
Nh/Uy = 0.75, and NL/U, = 8.0. According to theory,
the lowest resonant dividing streamline height for
this mountain is near Hy = 4.1U,/N. However, here
the zero wind line has been imposed at Hy = 2.0Uy/
N. In Fig. 10 we see that a large upstream surge causes
an adjustment in the horizontal velocity fields. The
surface wind at —5.0L has dropped to under 0.5U, by
the end of the integration, a 50% reduction; at —2.0L
the surface wind is near zero. The height of the zero
wind line upstream of the mountain increases to 2.5
Uy/N. The strong blocking upstream is accompanied
by strong surface winds in the lee. In Table 1 we see
that the ultimate surface drag (plotted also in Fig. 2)
is nearly twice that predicted by Long’s model.

Thus, the analogy with hydraulic theory is at least
partially correct. To be completely analogous the new
upstream flow would have to satisfy the conditions for
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F1G. 10. Time evolution of upstream wind profiles U(z) for a
mountain with N2/U = 0.75 and NL/U = 8.0 and a critical line
height of Hy, = 2.0U/N. This value of H, is well below the minimum
required for transitional flow in Smith’s theory. The time ranges from
t =0tot = 28.2L/U,. Note the deceleration of the low-level flow as
time progresses.

a steady asymmetric solution according to Smith’s the-
ory. When new nondimensional flow parameters are
calculated, based on the far upstream conditions at
28L/U, we see that the flow does, in fact, come some-

what closer to Smith’s theoretical configuration. De--

noting the final adjusted wind and stratification by Uy
and Ny, we estimate a new mean wind, Uy = 0.5Uj,
and stratification, Ny = 0.75N. The new nondimen-
sional mountain height is N;4/U,= 1.125. The critical
line, originally at Hy = 2.0Uy/N, is shifted to 2.5Uy/N.
In terms of the new mean flow conditions- this height
becomes 3.75U,/Ny.

Smith’s theory cannot accommodate mountains
higher than Nh/U, = 1.0. He speculates that this di-
lemma may be resolved by upstream blocking which
would effectively reduce the mountain height. In fact,
a layer of nearly stagnant fluid exists at the foot of the
mountain, which is still growing in the horizontal at
the end of the integration. If the mountain height is
measured from the top of this layer, a height in the
range 0.5-0.75N;h/Usresults. With Hy = 3.75U;/Nra
mountain of the reduced height yields reasonable
agreement with Smith’s prediction.

There are several reasons why the final state is not
precisely like the idealized solution. First, the upstream
wind has a tanh(z) profile. Since flow conditions are
not initially uniform in z, Long’s model equations, on
which Smith’s theory is based, do not hold exactly be-
low Hj. This effect becomes more.pronounced as the
critical line is moved closer to the ground. Second, the
upstream flow has not reached a steady state by the
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end of the experiment. The incoming flow at later times
may approach closer agreement. Third, even if the up-
stream flow were initially uniform in height as required
by Smith’s theory, the upstream adjustment would in-
troduce vertical shear in the oncoming flow. Despite
these problems, the general level of agreement noted
previously attests to the robustness of the hydraulic
analogy.

2) BEHAVIOR FOR HIGHER-ORDER RESONANCES

The hydraulic analogy is not as successful for flows
with critical lines far from the surface. Sufficiently
strong upstream influence could always produce in-
coming flow consistent with an asymmetric state. Yet,
this clearly does not happen in flows where breaking
occurs just above the lowest resonant height, (see Fig.
6). Instead, the flow assumes an almost completely
symmetric state resembling a subcritical solution in
one-layer flow. When the critical line is above the lowest
resonant height, Hy, the flow does not enter a high-
drag configuration until the critical line is very close
to the next resonant height. In the experiment with H,
= (3.45 + m)Uy/N and Nh/U, = 0.5 the zero wind line
was initially = Uy/N below the second resonant position
at Hy = 3.45 + 2w Uy/N. In that case the incoming flow
did not adjust itself in a way that allowed an asym-
metric configuration to develop. Clark and Peltier
(1984) performed several experiments with critical lines
between the first and second resonant positions. In Fig.
2 there is no evidence of resonant growth until H
= 3.30U,/N, which is only 0.27 ~ 0.64U,y/N below
the second resonance for Nh/U, = 0.75. Thus, there is
evidence that when the critical line is above the lowest
set of resonances, the breaking level must be close to
the theoretical position obtained from steady state the-
ory in order for a high-drag flow to develop. Although
the steady states obtained by Smith are invariant to
translations of the dividing streamline by 27 Uy/N, time
dependent flows with critical levels are not invariant
under similar translations of the zero-wind line.

At this point, theory provides no clues as to when a
transitional steady state may be expected to evolve in
a time-dependent, critical layer flow. The phenome-
nology suggested by our simulations may be summa-
rized as follows: Whenever the critical level is at or

-below the lowest resonant value for a given mountain

height, an asymmetric high-drag hydraulic state de-
velops, with the upstream flow adjusting, if necessary,
to make the state possible. For higher resonances,
however, the flow must be increasingly sharply tuned
to the resonant conditions for the high-drag state to
evolve. These conclusions presume that the mountain
is not so high as to permit breaking to occur in the
uniform flow conditions obtaining well below the crit-
ical level; when such low-level breaking can occur, the
evolution of the high-drag state is unlikely to be ap-
preciably influenced by the critical layer dynamics.
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Some results pertinent to this regime will be discussed
in section 4.

c¢. Small amplitude topography: Numerical results for
Nh/U = 0.15 and Nh/U = 0.08

According to (1.1), the thickness of the stagnant re-
gion, 8.(0) is O(#"?) for small mountains. Intuitively,
we might expect that as it becomes thinner the flow
will no longer feel the stagnant region as a reflecting
upper boundary and the high-drag configuration would
no longer form. Moreover for smaller mountains, linear
critical dynamics (which yields absorption) remain
valid for longer times, so that any resonant effects
should set in later in the experiments.

Four experiments were performed with a mountain
of height Nh/U, = 0.15 and width NL/U, = 8.0. The
vertical resolution in these experiments was increased
in order to resolve the wave displacements in the
breaking region; a vertical grid length, Az = 0.08U,/
N, was used. The computational domain had 80 points
in the vertical. A sponge, 15 points deep, was sufficient
to absorb the residual wave motion that managed to
pass through the critical line. The horizontal resolution
remained Ax = 0.167L. However, only 60 points were
employed in the horizontal, with a lateral sponge 20
points wide. This restriction of the horizontal domain
did not seem to affect the flow near the mountain dur-
ing the relatively short integration periods used for these
experiments.

Smith’s theory gives a resonant Hy of 0.797xUy/N
for a mountain with Na/U, = 0.15. Numerical exper-
iments with Hy = 0.87, 0.757, 0.7, and 0.5« times
Uy/N were performed. Figure 11 shows histories of
surface drag for two of these experiments. The drag
does not significantly exceed the steady state value given
by Long’s model until Hy = 0.57 Uy/N. The time history
of drag for this value of H, is qualitatively different
from that in the other cases. The evolution of the drag
in the remaining experiments is similar to the one for
Hy = 0.7xUy/N, which is also shown in Figure 11.

As suggested by linear critical layer dynamics, the
high-drag flow with Ni/U, = 0.15 and Hy = 0.57Uy/
N evolves relatively slowly considering the height of
the critical line. Its evolution should be compared with
the evolution of the flow in the experiment with NA/
Uy = 0.75 and H, = 2.0Uy/N. The critical lines are at
similar heights. In the flow over the higher mountain,
high-winds extend far to the lee by 9.4L/U,. For Nh/
Us = 0.15, however, examination of the wind fields at
18.8L/U, reveals that the high-wind layer is still con-
fined near the mountain. The surface drag in the flow
with Nh/Uy = 0.75 and Hy = 2.0U,/N begins to level
off around 11.0L/U,. The surface drag in Fig. 11, on
the other hand, grows steadily until the end of the in-
tegration at 22.5L/U,. Its magnitude doubles in about
15L/U,. Assuming a drop of 0.8U,/N in the height of
the dividing streamline across the mountain, we cal-
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F1G. 11. Upper panel: surface drag as a function of time for flow
over a mountain with Nh/U, = 0.15 and NL/U, = 8.0, with H,
= 0.72Up/N and Hy = 0.57Uy/N. Lower panel: results for Na/U,
= 0.08 with Hy = 0.47Uy/N.

culate a theoretical surface drag near 0.085Uy*/N from
(2.3). At 22.5L/U, the drag in Fig. 11 has attained less
than 50% of this magnitude. This is a further indication
that the asymmetric configuration in this flow is still
evolving. ;

Thus, a steady state configuration associated with
high surface drag may exist for a mountain height of
Nh/U, = 0.15. However, the time required for it to
evolve is longer than was required for a more nonlinear
flow with a critical line at a similar height. The fact
that a resonance did not occur when H, was close to
the theoretical value of 0.797Uy/N i1s probably a result
of the z dependence of the mean wind profile. For small
values of Hj the wind changes significantly with height
throughout most of the layer between the ground and
the critical line. Long’s model is no longer an accurate
description of the flow below the dividing streamline,
so that Smith’s resonant heights may require modifi-
cation. Increased phase change due to greater penetra-
tion of the wave into the region of weak wind (and
consequently smaller vertical wavelength) may also
play a role in modifying the effective upper boundary
condition.
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Resonant high-drag flows may develop for even
smaller mountains. When Nh/U, = 0.08, a weakly
asymmetric solution with steadily increasing drag oc-
curs for Hy = 0.4wUy/N. The drag history for this ex-
periment is shown in the lower panel of Fig. 11. We
have found that the degree of asymmetry in the flow
fields increases until the end of the integration, and
the displacements at the critical line grow and the
breaking region extends itself slowly downstream as
time progresses. However, the flow fields are not as
clearly associated with a high-drag configuration as
those in the corresponding experiments with NA/Uj,
= (.15. From Fig. 11, the doubling time for the surface
drag for the lower mountain is about 45.0L/U,. The
final surface drag is about 60% higher than that ob-
tained in Long’s model for a mountain with Na/Uj,
= 0.08 and NL/U, = 8.0. For a steady, high-drag flow
over this mountain we obtain a drag of 0.02U,/N. The
drag in Fig. 11 has reached only about 30% of this
value by 22.5L/U,.

These results have not settled the question of whether
there is a mountain height below which transitional
high-drag flows cannot occur. Nevertheless, they do
establish that the high-drag configuration takes longer
to evolve as the mountain becomes smaller. This may
result from the increasing penetration of the linear
propagation zone into the shear layer as the wave am-
plitude decreases. Small amplitude waves can approach
the zero-wind line more closely before overturning.
Near the zero-wind line, the local, vertical group ve-
locity decreases so that the time of propagation between
the surface and the breaking region becomes longer.

Moreover, when the mountain is small, it takes a longer

time for nonlinear effects to change the critical level
from an absorber to a reflector, though a reflecting state
does ultimately emerge. /

d. Effects of shear layer thickness

The propagation of linear gravity waves into a critical
layer can be described with WKB theory as long as the
minimum Richardson number in the shear layer is
large. However, the mean flow with Ri = 1.0 used in
the foregoing experiments may produce substantial
partial reflections. It could be argued that this predis-
poses the flow toward hydraulic behavior. Here we will
describe an experiment in which a much thicker shear
layer is used.

The mean flow in this experiment is given by 2.1
with A = 3.3Uy/N and Hy = 3.45Uy/N. The minimum
Richardson number for the shear layer is given by Ri
= N%/(Up/AY* = 10.89. For this value of Ri, nearly
complete absorption should occur in linear theory The
nondimensional height and width of the mountain used
in the experiment are Nh/U; = 0.5 and NL/U, = 8.0,
respectively. The mean flow speed between the critical
layer and the surface is somewhat below 1.0Uj, so that
these values may be underestimates. However, to avoid
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confusion, quantities will continue to be scaled by the
asymptotic wind, U,.

The total surface drag for this flow increases
throughout the integration, reaching a value slightly
less than the Ri = 1.0 cases by the end of the integration
(Table 1), which suggests that the flow is approaching
an asymmetric high-drag state. The flow fields, (not
shown), confirm this. Breaking occurs at lower levels
than in the corresponding experiment with Ri = 1.0,
(Fig. 5); however, this is to be expected since the average
winds are weaker in the profile with Ri = 10.89. Other
small differences between the flows arise from the fact
that the mean wind is weaker when Ri = 10.89. First,
the maximum drag and maximum surface winds are
weaker here than they were in the corresponding case
with Ri = 1.0. Second, the rate at which the surface
drag grows is somewhat slower in terms of L/ Up than
it was in the case with Ri = 1.0.

Despite small modifications arising from the height
dependence of the mean flow, the foregoing results im-
ply that the parameters of the critical level are irrelevant
to the dynamics of the high-drag configuration. As a
corollary they imply that the interaction of a gravity
wave with a stable, critical layer is dominated by
strongly nonlinear processes that are independent of
the mean flow Richardson number, at least when the
mountain is not too small.

e. Nonhydrostatic effects: Results for narrow mountains
(NL/U = 2.0)

The steady state theory in Smith (1985) is difficult
to extend to nonhydrostatic flows due to the appearance
of the d,, terms in Long’s model, precluding a local
analytic solution at each x. A steady state solution with
open lateral boundaries, a free nonlinear upper bound-
ary, and a nonlinear bottom boundary would not be
easy to obtain numerically either. A simple way to as-
sess the importance of nonhydrostatic effects is to re-
duce the width of the mountain used in the simulations
of critical layer flows.

The critical layer experiments discussed so far were
for a broad mountain, NL/U, = 8.0, so that nonhy-
drostatic effects were unimportant for the larger-scale
motions in the experiments. In order to assess non-
hydrostatic effects, we performed several experiments
with mountains having NL/U, = 2.0. Final drags for
these experiments are given in Table 1. The first of this
series had Nh/U, = 0.75 with a critical level at Hy = 37/
2(Up/N). This arrangement of mountain height and
critical-layer height produced a large response with a
broad mountain. This is again the case when NL/Uj,
= 2.0. The maximum drag in this experiment is slightly
smaller than it was in the corresponding experiment
with NL/U, = 8.0. At the end of the integration it is
still growing, however. The next two experiments had
Nh/Uy = 0.5. In one case the critical line is at H,
= 3.45Uy/N and in the other, at Hy = 37/2(Uy/N). The
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results follow the pattern observed for the broad
mountain. A large response occurs in the surface drag
for Hy = 3.45U,/N, while the drag for Hy = 3n/2(Uy/
N) decreases almost to zero.

The high-drag flows in these experiments look sim-
ilar to those obtained in the corresponding experiments
with NL/U, = 8.0 (Fig. 5), except that there is some
evidence that the downstream propagating jump in
these flows begins to break up into small-scale non-
hydrostatic oscillations, with wavelength on the order
of 7.0Uy/N.

The flow for the “nonresonant reflecting” case with
Nh/Uy = 0.5 and Hy = 37/2(Uy/N) is more visibly
affected by nonhydrostatic motion. The largest hori-
zontal velocity over the mountain is only 60% as strong
as it was in the corresponding case with NL/U, = 8.0.
In the potential temperature field a train of small-scale
waves is evident in the lee. These have approximately
the wavelength obtained from linear theory for non-
decaying lee waves in uniform flow with wind and stra-
tification given by U, and N and a free-surface upper
boundary near z = 3x/2(Uy/N), further supporting the
contention that in this regime the critical level acts as
a free-surface reflector.

Overall, however, the modifications introduced by
nonhydrostatic motion are minor when the critical line
is low. In particular, the resonance structure derived
from hydrostatic theory is unaffected.

When the critical layer is far from the surface, non-
hydrostatic effects are more important. For a flow with
Nh/Uy = 0.5, NL/Uy = 2.0, and Hy = (3.45 + 2m)Uy/
N, the surface drag does not show as dramatic an in-
crease as it did in the corresponding experiment with
NL/U, = 8.0 (See Table 1). Still, an excess of about
60% over the Long’s model prediction occurs. Non-
hydrostatic dispersion has significantly weakened the
resonant response predicted by hydrostatic theory.
However, there is still a distinct difference between this
flow and a nonresonant flow such as the one obtained
in the absorbing or reflecting regimes. This is borne
out by the flow fields (not shown) which show the char-
acteristic asymmetry between far-upstream and far-
downstream flow conditions.

4. Importance of the environmental critical layer
a. Introduction V

From the foregoing results, it is clear that the reso-
nance structure predicted by Smith is correct for flows
with an environmental critical line. However, the
idealized high-drag configuration described in section
1c owes its existence to the upper boundary condition
9,6, = 0. The key requirement for this condition is that
the pressure along the upper branch of the dividing
streamline, (i.e., z = Hy), be constant. The critical line
flow favors this condition, as there is little transmission
of wave energy aloft.

It is important to determine whether the presence
of the critical line is crucial to the realization of the
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high-drag states. Next we will describe experiments in
which the flow is initialized with the idealized high-
drag configuration. In contrast to our previous exper-
iments, constant wind and stratification will be im-
posed at the inflow boundary.

b. Experimental setup

The procedure used to introduce the idealized high-
drag state into the numerical model is as follows. A
large Rayleigh damping is added to the prognostic
equations for u, w, and 0, that relaxes each field to the
desired solution. The structure of the initial flow is
given by Long’s model once 6.(x) has been determined
numerically from (1.1), as in Smith (1985). The damp-
ing is left on long enough to allow any transients to
die away, and then gradually turned off; a forcing period
of 5.0L/U, was found to be long enough.

Since the solutions are asymmetric between the far-
upstream and far-downstream sides of the mountain,
they must be modified before they can be introduced
into a periodic domain. The supercritical solution in
the lee must return to the upstream flow structure in

. a jump somewhere downstream of the mountain. If

this jump is placed within the lateral sponge, it does
not affect the flow in the interior in any way. This is
the procedure we adopted.

The domain used in these experiments has 180
points in the horizontal and 40 points in the vertical.
A lateral sponge, 60 gridlengths wide, is introduced to
absorb horizontally propagating disturbances. The flow
in the lateral sponge is relaxed to uniform parallel flow
with constant stratification. The horizontal resolution
is given by Ax = 0.167L. Although the flows studied
imposed extreme variations across the lateral sponge,
no significant reflection or generation of spurious waves
occurred. The vertical resolution is Az = 0.33Uy/N. A
sponge, 12 gridpoints deep, is used below the top
boundary. This was found adequate to absorb most of
the vertically propagating wave energy generated during
these flows.

¢. Results
1) NEARLY HYDROSTATIC FLOWS (NL/U, = 10.)

Experiments were initialized with the ideal high-drag
flows corresponding to Nh/U, = 0.98 and Na/U, = 0.5.
A mountain width of NL/U, = 10.0 was used. Flow
fields for the case with Ni/U, = 0.98 are shown in Fig.
12. Instabilities can be seen to develop along the
boundaries of the well-mixed region, but these weaken
as the large shears are eliminated. The effect of these
small-scale instabilities on the large-scale flow seems
to be negligible. The surface winds in the lee of the
mountain weaken quickly at the beginning, but reach
a new steady value of 3.5U,. The surface drag (Fig. 14,
lower panel) also weakens initially and then becomes
relatively constant. Its final value is close to that ob-

" tained for a mountain of the same height when the
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FIG. 12. Potential temperature fields from an experiment initialized
with an ideal high-drag state such as the one pictured in Fig. 7. In
this experiment a mountain with N/U = 0.98 and.NL/U = 10.0
was used. The flow is shown at ¢ = 2.6 and 15.0L/U. A jump returns
the flow to the structure it has upstream of the obstacle. In this ex-
periment the jump is within the lateral sponge, and it remains steady
throughout the integration.

flow is uniformly accelerated from rest [see panel A of
Fig. V.15 in Bacmeister (1987)], and is comparable to
the theoretical value given in (2.3).

The shape of the isentrope that marks the upper edge
of the strong wind layer, called the critical isentrope
hereafter, does not undergo any large changes. At the
end of the integration it still drops from an upstream
height near z = 4.0Uy/N to a new level close to z
= 1.5Uy/N in the lee. However, the air aloft does not
remain quiescent. Regions of overturning quickly ap-
pear above the mountain and persist throughout the
integration. These waves produce an appreciable mo-
mentum flux aloft. The residual flux above z = 5.0U,/
N becomes fairly constant with height and its value at
the end of the integration is near 0.8Uy%/N. This is
slightly below the saturated Long’s model value for
NL/Uy = 8.0, which is about 0.9Uy/N. The residual
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flux is far less than the surface drag, again implying
considerable scattering of vertical into horizontal mo-
mentum flux in the breaking region.

The ¢ fields for Ni/U, = 0.5 are shown in Fig. 13,
with drag history shown in the upper panel of Fig. 14.
This mountain height is not sufficient to produce wave
breaking in uniform flow, and the subsequent evolution
away from the initial idealized state differs markedly
from the previous case. The surface drag and lee surface
winds decrease for the entire integration. The final
value of the drag in this flow, 0.4Uy’/N, is well below
0.65U,%/N, which is the largest drag obtained for the
same mountain in the critical layer flows discussed in
section 2. The potential temperature fields, shown in
Fig. 13 confirm that the high-drag configuration is de-
caying. The shear between the windstorm and the stag-
nant region has weakened considerably by 25.0L/U,.
The stagnant region no longer can be accurately de-
scribed as such. The minimum flow speed near the
mountain has increased to 0.3U,. The shape of the
critical isentrope undergoes large changes. Its level in

10.—

i

Nz/U
[4,
|

x/L

F1G. 13. As in Fig. 12, but for Nh/U = 0.5, a value that is
too small to sustain wavebreaking in uniform flow.
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F1G. 14. Upper panel: surface drag vs time for N4/U = 0.5, in the
experiment initialized with the idealized steady state. The drag in
this flow weakens significantly throughout the entire integration.
Lower panel: surface drag vs time for Nb/U = 0.98, in the experiment
_ initialized with the idealized steady state. After a quick decrease ini-
tially, the drag remains fairly constant until the end of the integration.

the lee of the mountain rises from z = 1.5Uy/N to z
= 2.5U,/N. :

The momentum flux profiles (not shown) approach
a height-independent steady state. Interestingly, the
drag and momentum flux aloft is around 0.4Uy*/N at
the end of the integration, which is substantially larger
than the value of 0.2U,*/N obtained in Long’s model
for a mountain with Na/U, = 0.5 and NL/U, = 8.0.
This may be due to generation of transient gravity
waves as the stagnant region undergoes wake collapse.
Otherwise, the final flow above the mountain has a
similar structure to solutions of Long’s model.

From these results we conclude that Smith’s ideal
high-drag configuration is not a consistent steady state
solution for flows with uniform conditions upstream.
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The upstream nose of the dead region is not stable.
Soon after the start of the integrations the isentropes
above the nose are drawn towards the surface. This
perturbation grows rapidly and generates a significant
amount of vertically propagating wave motion. The
end effect of the instability is to allow the mountain
wave train to propagate beyond the dead region. If the
mountain waves do not induce overturning, the stag-
nant region cannot maintain itself indefinitely. It begins
to collapse near the mountain. As it does, -the flow
below weakens.

Nevertheless, when wave breaking does occur, the
flow below the breaking level remains close to the ideal
configuration proposed in Smith (1985). This is true
whether the breaking results because the mountain
wave encounters a critical line or because the mountain -
is high enough to induce overturning in uniform flow.
This suggests that wave breaking acts to produce a con-
dition close to that postulated by Smith along the lower
boundary of the breaking region.

2) RESULTSFORNL/U =4

As a further check on the robustness of the idealized
hydraulic solutions, we have carried out an integration
in a more nonhydrostatic regime. For Nh/U, = 0.98
with NL/U, = 4, the theoretical high drag state main-
tains itself much as it did in the case NL/U; = 10. In
the narrow mountain case, the final drag is about 3Uy’/
N, which is only slightly less than the 3.78U,*/N value
found for the wider mountain (Table. 1).

‘5. Summary and conclusions

a. Resonance structure: Conditions leading to high drag

Understanding the nature of motions forced by a
mountain in a flow with wind reversal is of relevance
to many naturally occurring flows, and, moreover,
provides a challenging test of theories predicting effects
of nonlinearity and wave breaking. The central datum
a theory must explain is the dependence of drag on the
critical level height Hy. Clark and Peltier (1984; hence-
forth CP84) attempt to explain their results in terms
of resonant reflection from the critical line, though they
do not provide any mathematical or physical argument
to justify the assumed phase of the reflection. The in-
ternal hydraulic theory of Smith differs from this in
providing a reflecting upper-boundary condition based
on physical principals, and in capturing nonlinear ef-
fects associated with displacement of the reflecting sur-
face. We have examined the relative merit of the two
theories by means of numerical experimentation, and
found the following.

For mountains above Nh/U, = 0.7, the theories of
Smith (1985) and CP84 fortuitously yield similar pre-
dictions for the even-order “resonant” positions of a
critical line. The experiments of CP84 were conducted
with a mountain of Ni/U, = 0.75. In section 2b the
work of CP84 was extended to include mountains of
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lower heights. In contradiction with linear resonance
theory, the response was found to depend dramaticaily
on the mountain height. The shift of the resonance
position was found to conform closely to that predicted
in the nonlinear study of Smith (1985). A comparison
of the flow fields in the numerical simulations with the
ideal configuration revealed substantial quantitative
similarity.

Also in accordance with Smith’s theory, high drag
transitional flow for Na/U; = 0.5 was found when NHy/
U, = 3.45 + 2w, but not at 3.45 + =. In the latter case,
the critical level acts as an absorber for all time—a
behavior which is outside the scope of Smith’s calcu-
lation. Curiously, although the internal hydraulic
equations with Smith’s upper boundary condition yield
a spurious reflecting state when applied to this case,
they accurately reproduce the simulations of the “an-
tiresonant” state found when H, is somewhat above
the first high-drag position.

b. Small amplitude topography

The analysis of Smith (1985) predicts the possibility
of a high-drag response for mountains of arbitrarily
small height. In section 3c it was shown that in the
presence of an environmental critical level, a transi-
tional, high-drag flow can occur for mountains as small
as Nn/U = 0.08. Thus, large amplitude incident waves
are not needed to turn the critical level into a reflector.
However, the time scale on which the drag evolves be-
comes longer as the mountain height decreases. It was
speculated that this results because small waves can
penetrate further into the critical layer, where the group
velocity is small, before overturning,

For small mountains, Smith’s equations do not ac-
curately predict the critical line heights corresponding
to high drag, suggesting that for lower amplitude in-
cident waves, the phase of the reflection from the crit-
ical line differs from that yielded by Smith’s physical
argument.

¢. Hydraulic analogies for time-dependent flow

Smith’s analysis for the steady state in a high-drag
flow has a clear affinity with results for steady one-
layer flow over an obstacle. In section 3b we saw that
this analogy extends at least partially to time-dependent
flows in which the critical line is near the surface. It
was shown that if the environmental critical line is ini-
tially below the position required by Smith (1985) for
a steady, high-drag flow, the incoming flow is adjusted
by a strong upstream surge. The critical line upstream
of the mountain, is lifted, while the speed of the low-
level flow is drastically reduced. The flow behind the
surge has approximately the structure required for a
steady, asymmetric state by Smith’s theory.

When the critical line is above the first resonant
height, the analogy with one-layer hydraulics breaks
down for time-dependent flows. In any event, the im-
plication is that a high drag state evolves when the
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critical level is at or below the lowest resonant dividing
streamline height, or when it is closely tuned to one of
the higher-order resonant positions. The general prin-
ciple to be adduced from this is that the hydraulic anal-
ogy is most valid when the active layer is shallow
enough that only a single vertical mode has the pos-
sibility of propagating upstream, and hence of becom-
ing critical (i.e., stationary) at the mountain crest.

d. Nonhydrostatic effects

In section 3e it was shown that the predictions of
Smith (1985) were not severely affected by nonhy-
drostatic motions when the critical line was near the
surface. Experiments with a mountain of width NL/
Up = 2.0 showed only minor differences from the nearly
hydrostatic results when the critical line was below H,
= 3mw/2U,/N. However, the resonant response for a
critical line at Hy = (3.45 + 2mx)U,/N was significantly
weakened. This has the obvious explanation that for
higher H,, the wave has more time to disperse in the
horizontal before encountering the critical level.

e. Importance of the environmental critical line

Does the success of Smith’s theory in the critical-
level case carry over to the situation in which breaking
occurs spontaneously in uniform ambient wind? In
section 4, experiments were discussed in which ideal,
high-drag flows were used as initial conditions for time-
dependent, nonlinear simulations. The incoming flow
in these experiments was uniform. We showed that the
ideal, high-drag configuration is not a consistent steady
state in the presence of uniform flow. Overturning was
found necessary to maintain the stagnant region above
the mountain. In cases where the mountain was too
small to induce overturning, the stagnant region col-
lapsed. Subsequently, the flow fields appear to be
evolving toward the conventional Long’s model solu-
tion, subject to a radiation upper-boundary condition.
On the other hand, when the mountain was high
enough to produce wave-breaking, Smith’s idealized -
solutions were modified to the extent of producing an
overturning region above the mountain near the di-
viding streamline height and a residual vertically pro-
pagating wave above this height, but the low-level flow
remained substantially unchanged. From this we con-
clude that wave breaking serves not as an initial *“trig-
ger” forcing the flow to evolve into an alternate steady
state, but it is a continuing and crucial part of the dy-
namics maintaining the high-drag state. This conclu-
sion remains valid even in the moderately nonhydro-
static regime. :

[ Critical layer dynamics: General implications

Although the present work was largely motivated by
the problem of stratified flow over obstacles, a number
of our results have implications in the broader context
of general critical layer dynamics. In brief, we have
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encountered three types of critical level behavior, de-
pending on the phase of the incident wave: (a) The
critical level acts as a perfect reflector, with the drag
and vertical momentum flux falling to zero, and the
flow assumes the perfectly symmetrical configuration
characteristic of Long’s model flow subject to a rigid-
lid or free-surface upper boundary condition. (b) The
critical level acts as a perfect absorber and the flow
below it resembles a Long’s model solution in a uni-
form current subject to a radiation upper boundary
condition. (c) The critical layer acts as a reflector in
accordance with Smith’s upper-boundary condition,
but the end state is an asymmetric transitional hy-

draulic flow involving large displacements of the critical -

level.

The transitional case is paradoxical: In order to de-
rive the hydraulic theory, one must assume a reflecting
upper boundary condition (though applied along a de-
formed surface). However, the profile of vertical mo-
mentum flux shows a decay with height that in other
circumstances would be considered the hallmark of
absorption. In fact, the momemtum budgets of cases
b and c are similar in their essential character, with
both exhibiting a balance between convergence of ver-
tical momentum flux and divergence of horizontal
momentum flux. Is the transitional flow case to be cat-
egorized as a reflecting or an absorbing critical layer?

- We are not certain that the distinction is meaningful,
and prefer to characterize both b and c as scattering of
vertically into horizontally propagating motions. Seen

_in this light, the chief difference between the two cases
is the magnitude of the critical level displacement, and
the main issue devolves to the efficiency of the hori-
zontal radiation. When the horizontal radiation is less
efficient, more of the incident wave pseudomomentum
remains behind to cause large in situ changes in the
flow. These novel aspects of critical layer behavior arise
from the consideration of the behavior of a horizontally
localized wave packet impinging on a critical level in
a horizontally unbounded domain. Because of the pos-
sibility of a net convergence of horizontal momentum
flux in this geometry, a convergence of vertical mo-
mentum flux can be supported in the steady state. This
contrasts markedly with the behavior of Rossby wave
critical levels in a periodic domain, as studied by Kill-
worth and Mclntyre (1985), which must ultimately be-
come reflectors. Clearly, the whole subject of horizon-
tally unbounded critical layers merits further investi-

_ gation.

These issues of reflection vs absorption are of pro-
found importance to any endeavor to parameterize the
effects of gravity waves on larger scale circulations. A
predictive theory of drag, and of momentum deposition
due to diverse gravity wave sources must await reso-
lution of the critical level issues raised here. Regardless
of the upper boundary condition that ultimately proves
appropriate, it is-clear that nonlinear effects of the sort
captured by hydraulic theory are of the essence.
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After the completion of the work reported on herein,

‘the authors learned of recently completed calculations

by Durran and Klemp which address some of the same
issues as treated in section 2. Despite the use of an
independent numerical model and somewhat different
choices of parameters, their conclusions vis-a-vis the
merits of the hydraulic analogy are, in every respect,
consistent with ours.
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